Linear Algebra II 07/04/2022, Thursday, 16:00 – 18:00

1 (7+7+6=20 pts)

Inner product spaces

Let \mathcal{V} be a finite-dimensional vector space with inner product $\langle \cdot, \cdot \rangle : \mathcal{V} \times \mathcal{V} \to \mathbb{R}$. Let $\{u_1, u_2, \ldots, u_n\}$ be an orthonormal basis of \mathcal{V} .

(a) Show that any vector $v \in \mathcal{V}$ can be expressed as

 $v = \langle v, u_1 \rangle u_1 + \langle v, u_2 \rangle u_2 + \dots + \langle v, u_n \rangle u_n.$

(b) Let $\varphi : \mathcal{V} \to \mathbb{R}$ be a linear map. That is, $\varphi(c_1w_1 + c_2w_2) = c_1\varphi(w_1) + c_2\varphi(w_2)$ for all $c_1, c_2 \in \mathbb{R}$ and $w_1, w_2 \in \mathcal{V}$. Show that there exists a vector $u \in \mathcal{V}$ such that

$$\varphi(v) = \langle u, v \rangle$$

for all $v \in \mathcal{V}$.

(c) Show that the vector u in (b) is *unique*. In other words, prove that if

$$\varphi(v) = \langle u_1, v \rangle$$
 and $\varphi(v) = \langle u_2, v \rangle$ for all $v \in \mathcal{V}$

then $u_1 = u_2$.

2
$$(6+12+6=24 \text{ pts})$$

Singular value decomposition

Consider the matrix A given by

$$\begin{bmatrix} 1 & 0 \\ 2 & -2 \\ 0 & 1 \end{bmatrix}.$$

- (a) Show that the singular values of A are $\sigma_1 = 3$ and $\sigma_2 = 1$.
- (b) Find a singular value decomposition of A.
- (c) Compute the best rank 1 approximation of A.

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. The notation $A \ge 0$ means: A is positive semidefinite.

- (a) Prove that if $A \ge 0$ then all its eigenvalues λ satisfy $\lambda \ge 0$.
- (b) Also prove the converse: if all eigenvalues λ of A satisfy $\lambda \ge 0$ then $A \ge 0$.
- (c) For r = 0, 1, ..., n, let A_r be the leading principal submatrices of A. Prove that if $A \ge 0$ then $A_r \ge 0$ for all r.
- (d) Prove that if $A \ge 0$ then $\det(A_r) \ge 0$ for all r.
- (e) Does the converse implication of statement (d) also holds? If not, give a counterexample.

4 (4+5+3+3+4+3=22 pts)

Jordan normal form

Suppose $A \in \mathbb{C}^{n \times n}$ and let $p_A(z)$ be its characteristic polynomial.

- (a) Let q(z) be a polynomial that annihilates A. Prove that every eigenvalue λ of A is a root of q(z), i.e. $q(\lambda) = 0$.
- (b) Let $p_{\min}(z)$ be the minimal polynomial of A. Prove that $p_{\min}(z)$ is a divisor of $p_A(z)$, i.e. there exists a polynomial d(z) such that $p_A(z) = d(z)p_{\min}(z)$.
- (c) Prove that every root of $p_{\min}(z)$ is an eigenvalue of A.

Now let n = 4 and define

$$A := \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 2 & 0 \\ 1 & 1 & 0 & 2 \end{bmatrix}.$$

- (d) Determine the eigenvalues of A and their geometric multiplicities.
- (e) Determine the Jordan normal form of A.
- (f) Determine the minimal polynomial of A.