Linear Algebra II

07/04/2022, Thursday, 16:00-18:00

1 ($7+7+6=20 \mathrm{pts}) \quad$ Inner product spaces
Let \mathcal{V} be a finite-dimensional vector space with inner product $\langle\cdot, \cdot\rangle: \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$. Let $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be an orthonormal basis of \mathcal{V}.
(a) Show that any vector $v \in \mathcal{V}$ can be expressed as

$$
v=\left\langle v, u_{1}\right\rangle u_{1}+\left\langle v, u_{2}\right\rangle u_{2}+\cdots+\left\langle v, u_{n}\right\rangle u_{n} .
$$

(b) Let $\varphi: \mathcal{V} \rightarrow \mathbb{R}$ be a linear map. That is, $\varphi\left(c_{1} w_{1}+c_{2} w_{2}\right)=c_{1} \varphi\left(w_{1}\right)+c_{2} \varphi\left(w_{2}\right)$ for all $c_{1}, c_{2} \in \mathbb{R}$ and $w_{1}, w_{2} \in \mathcal{V}$. Show that there exists a vector $u \in \mathcal{V}$ such that

$$
\varphi(v)=\langle u, v\rangle
$$

for all $v \in \mathcal{V}$.
(c) Show that the vector u in (b) is unique. In other words, prove that if

$$
\varphi(v)=\left\langle u_{1}, v\right\rangle \text { and } \varphi(v)=\left\langle u_{2}, v\right\rangle \text { for all } v \in \mathcal{V}
$$

then $u_{1}=u_{2}$.
$2(6+12+6=24$ pts $)$
Singular value decomposition

Consider the matrix A given by

$$
\left[\begin{array}{cc}
1 & 0 \\
2 & -2 \\
0 & 1
\end{array}\right] .
$$

(a) Show that the singular values of A are $\sigma_{1}=3$ and $\sigma_{2}=1$.
(b) Find a singular value decomposition of A.
(c) Compute the best rank 1 approximation of A.

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. The notation $A \geqslant 0$ means: A is positive semidefinite.
(a) Prove that if $A \geqslant 0$ then all its eigenvalues λ satisfy $\lambda \geqslant 0$.
(b) Also prove the converse: if all eigenvalues λ of A satisfy $\lambda \geqslant 0$ then $A \geqslant 0$.
(c) For $r=0,1, \ldots n$, let A_{r} be the leading principal submatrices of A. Prove that if $A \geqslant 0$ then $A_{r} \geqslant 0$ for all r.
(d) Prove that if $A \geqslant 0$ then $\operatorname{det}\left(A_{r}\right) \geqslant 0$ for all r.
(e) Does the converse implication of statement (d) also holds? If not, give a counterexample.
$4 \quad(4+5+3+3+4+3=22 \mathrm{pts})$
Jordan normal form

Suppose $A \in \mathbb{C}^{n \times n}$ and let $p_{A}(z)$ be its characteristic polynomial.
(a) Let $q(z)$ be a polynomial that annihilates A. Prove that every eigenvalue λ of A is a root of $q(z)$, i.e. $q(\lambda)=0$.
(b) Let $p_{\min }(z)$ be the minimal polynomial of A. Prove that $p_{\min }(z)$ is a divisor of $p_{A}(z)$, i.e. there exists a polynomial $d(z)$ such that $p_{A}(z)=d(z) p_{\min }(z)$.
(c) Prove that every root of $p_{\min }(z)$ is an eigenvalue of A.

Now let $n=4$ and define

$$
A:=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 1 & 2 & 0 \\
1 & 1 & 0 & 2
\end{array}\right]
$$

(d) Determine the eigenvalues of A and their geometric multiplicities.
(e) Determine the Jordan normal form of A.
(f) Determine the minimal polynomial of A.

